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Adaptive evolution occurs when fitness covaries with genetic merit for a trait (or traits). The breeder’s equation (BE), in both

its univariate and multivariate forms, allows us to predict this process by combining estimates of selection on phenotype with

estimates of genetic (co)variation. However, predictions are only valid if all factors causal for trait-fitness covariance are measured.

Although this requirement will rarely (if ever) be met in practice, it can be avoided by applying Robertson’s secondary theorem of

selection (STS). The STS predicts evolution by directly estimating the genetic basis of trait-fitness covariation without any explicit

model of selection. Here we apply the BE and STS to four morphological traits measured in Soay sheep (Ovis aries) from St. Kilda.

Despite apparently positive selection on heritable size traits, sheep are not getting larger. However, although the BE predicts

increasing size, the STS does not, which is a discrepancy that suggests unmeasured factors are upwardly biasing our estimates of

selection on phenotype. We suggest this is likely to be a general issue, and that wider application of the STS could offer at least a

partial resolution to the common discrepancy between naive expectations and observed trait dynamics in natural populations.

KEY WORDS: Natural selection, fitness, microevolution, breeder’s equation, secondary theorem of selection, Robertson–Price

identity, genetic covariance, Soay sheep, Ovis aries.

In the absence of genetic constraint, evolutionary change is the

expected outcome of natural selection, which can itself be de-

fined as occurring when phenotypic variation causes variation in

fitness (Endler 1986). Thus, adaptive evolution will generally oc-

cur if heritable traits have causative effects on fitness, although for

any single trait our expectations for change are also contingent

on patterns of genetic covariance with other traits under selec-

tion. Conceptually, if a heritable trait causes fitness variation,

then breeding values for that trait (i.e., the influence of an indi-

vidual’s genes relative to population trait mean; Falconer 1981)

become breeding values for fitness. Consequently, the phenotypic

distribution of the trait will change within a generation, and the

resultant change in the distribution of the breeding values will

transmit phenotypic change to future generations.

Quantitative genetic theory provides us with two key models

for predicting the evolution of phenotypic traits under selection.

The first, and most commonly used, is the breeder’s equation

(BE) (Lush 1937), which in its univariate form (UVBE) is

�z̄ = h2S = σ2
a(z)

σ2
p(z)

σp(z, w), (1)

where �z̄ is the predicted change in trait mean phenotype after one

generation, h2 is the heritability of the trait (defined as the ratio of

additive genetic σ2
a(z) to total phenotypic σ2

p(z) variance), and S
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is the selection differential, defined equivalently as the change in

mean phenotype within a generation or as the phenotypic covari-

ance of the trait with relative fitness σp(z, w). Less well known, at

least to empiricists, is a second model known alternatively as the

Robertson–Price identity or Robertson’s secondary theorem of

selection (STS) (Robertson 1966, 1968; Price 1970). This states

that the evolutionary change is equal to the genetic covariance of

a trait with relative fitness such that:

�z̄ = σa(z, w). (2)

These two equations follow directly from the definition

of adaptive evolution given above, and are equivalent when

the causative effect of the trait on fitness is solely responsible

for the covariance between the trait and fitness (Queller 1992;

Morrissey et al. 2010). In other words this is when the statistical

relationship between the trait and fitness, estimated as S in the

BE, arises completely from the fact that the trait variation causes

fitness variation. If this is not the case and additional factors

influence the covariance between the trait and fitness, a multi-

variate version of the BE (MVBE; Lande 1979) is required in

which:

�z̄ = GP−1S, (3)

where z̄ is a vector of population mean phenotypic values, G and P
are the genetic and phenotypic variance–covariance matrices, and

S is a vector of selection differentials. This multivariate form of

the model is predictive, but requires the important assumption that

all the factors (which may be additional traits or environmental

effects such as food availability or temperature) contributing to

the trait-fitness covariance are known, measured, and included

(Morrissey et al. 2010). Thus, the key assumption of the BE—

in both univariate and multivariate forms—is that the trait-fitness

covariance is caused by the trait(s) in the model and that there

are no “missing traits” (Queller 1992; Hadfield 2008; Morrissey

et al. 2010). Under this condition the shift in breeding values,

and consequently in population mean phenotypes must follow

according only to patterns of genetic variation and covariation

captured in G.

The STS, on the other hand, requires no assumption about

causation to be made (Morrissey et al. 2010). Instead trait evolu-

tion is predicted by directly estimating the genetic component of

the association between a trait of interest and relative fitness. In

fact, despite its name, the STS need not actually be about selec-

tion on the focal trait at all. For instance, covariance of focal trait

breeding values and relative fitness could arise from selection on

a genetically correlated trait (whether measured or not). As such

the secondary theorem is arguably more about genetics than it

is about selection, especially because the genetic covariance of a

trait with fitness can actually be nonzero in the complete absence

of selection (e.g., in the case of evolutionary change caused by

drift). The important point is that the secondary theorem provides

a direct prediction of evolutionary change. However, this predic-

tion, for better or worse, is not generated in conjunction with any

insight as to the true form of selection.

We have recently proposed that the STS might provide a more

robust predictor of evolutionary change than the BE in studies of

natural populations (Morrissey et al. 2010). The core argument

for this is that the genetics, physiology, behavior, and ecology

of phenotypic variation and fitness variation are so complex that

we are unlikely to identify, much less meaningfully measure and

adequately model, all of the factors contributing to trait-fitness

covariation. Consequently, our estimates of selection acting on in-

dividual traits are often likely to be biased (Rausher 1992; Stinch-

combe et al. 2002; Kruuk et al. 2003), in which case predictions

from the STS should be more robust than those obtained from

the BE. If this view is correct, application of the STS may offer a

resolution to the problem that while phenotypic traits frequently

appear to be selected (Kingsolver et al. 2001; Kingsolver and

Pfennig 2004) and heritable (Roff and Mousseau 1987), there is

a paucity of evidence for evolutionary responses in intensively

studied populations (Merilä et al. 2001), and indeed phenotypic

trends in trait values are often counter to expectations based on

the direction of selection (Gienapp et al. 2008).

Here we test this proposal with an analysis of morphological

trait variation in Soay sheep, Ovis aries, from the island of Hirta,

St. Kilda, Scotland. Many morphological traits in this popula-

tion have a partial genetic basis of variation (e.g., Robinson et al.

2006; Wilson et al. 2006), and also covary phenotypically with fit-

ness such that they are subject to apparent natural selection (e.g.,

Preston et al. 2003; Milner et al. 2004). Body size in particular is

heritable (Milner et al. 2000; Wilson et al. 2007), and is positively

related to survival (Coltman et al. 1999b; Milner et al. 2004 ) and

reproductive success (Coltman et al. 1999a; Preston et al. 2003).

However, the body size of Soay sheep has actually declined dur-

ing the course of the intensive ongoing individual-based study

(Wilson et al. 2007; Ozgul et al. 2009). This decline has occurred

in part because of within-generation changes in phenotypic dis-

tributions of body size, possibly influenced by a partial relaxation

of viability selection (Ozgul et al. 2009). At the genetic level,

it has proven very difficult to determine whether mean genetic

merit of the population has also changed. Wilson et al. (2007) re-

ported a small upward trend in breeding values, but see Hadfield

et al. (2010) for a criticism of the methods by which statistical

uncertainty was evaluated (the trend is nonsignificant and small

in magnitude). Consequently, this system provides an ideal op-

portunity to test whether empirical application of the STS will

(1) produce different predictions of adaptive phenotypic evolu-

tion than the BE and (2) whether predictions of the STS are more

consistent with the general pattern of stasis in selected phenotypic
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traits that predominates in data from long-term individual-based

field studies (Merilä et al. 2001). We apply the animal model

(Henderson 1973; Kruuk 2004) to estimate genetic parameters

associated with both the BE and the STS. Specifically, this allows

direct estimation of parameters such as heritabilities, covariances

of traits with relative fitness, that is, selection differentials, and the

genetic covariances of traits with relative fitness. Consequently,

we can evaluate both BE-based predictions of evolutionary change

and predictions based on the STS in a common framework. This

allows unbiased estimation of key parameters in equations (1), (2),

and (3), including and in addition to implementation of statistical

tests advocated by Rausher (1992).

Methods
We applied linear mixed effect models, specifically various imple-

mentations of the animal model (Henderson 1973; Kruuk 2004),

to estimate the parameters of the UVBE, MVBE , and the STS

for four morphologial traits in Soay sheep. All models were fit-

ted by restricted maximum likelihood using ASREML (Gilmour

et al. 2002). We first summarize the methodology relating to data

collection and the estimation of pedigree before describing the

quantitative genetic modeling in full detail.

DATA COLLECTION AND ESTIMATION OF PEDIGREE

AND FITNESS

The Soay sheep population inhabiting Village Bay on the island

of Hirta, St. Kilda, has been the subject of intensive, individual-

based study since 1985. Each year, extensive censusing and field

work is conducted during which the majority of the lambs born in

the study area are caught, individually tagged, and tissue samples

are obtained to allow the determination of paternity by molecular

methods (described below). Each August, a large proportion of

the study population is captured and phenotyped for multiple

traits, so that multiple measurements may be available for an

individual across different years of its life. Here we focus our

analysis on weight (in kg, number of observations, no = 4337,

number of individuals, ni = 1829); length of the hind leg, measured

as metatarsus length (in mm, no = 4618, ni = 2206); horn length

(in mm, no = 1496, ni = 878); and scrotal circumference (in

mm, no = 322, ni = 114). Note that while many females have

horns we treat the latter two traits as sex-limited (i.e., consider

horns in males only) and furthermore limit our analysis of horn-

length to those males with the “normal” morph (i.e., large, strong,

curled horns that do not break during fights; Clutton-Brock et al.

1997).

The pedigree information required to parameterize the quan-

titative genetic models was obtained through a combination of

observation (4373 maternities assigned), and molecular paternity

assignment using microsatellite and allozyme marker data ana-

lyzed with the R package MASTERBAYES (Hadfield et al. 2006).

Horn type and linear and quadratic terms of age were included

as additional predictors of paternity in an approach similar to

that recently described by Walling et al. (2010). Briefly, we si-

multaneously analyzed paternity of all lambs born between 1985

and 2009, using the molecular data as previously described (e.g.,

Overall et al. 2005), but with recent cohorts having been geno-

typed at a core set of 18 microsatellite loci, and also using unique

vectors of candidate sires constructed for each year based on the

total set of males known to be alive. MASTERBAYES estimates the

pedigree and the effect of the phenotypic predictors of paternity

jointly, providing posterior distributions for both. As expected

from previous reports (Pemberton et al. 1999; Robinson et al.

2006), age (both linear and quadratic terms) and horn type are

highly significant predictors of paternity (i.e., the posterior dis-

tributions of associated coefficients do not overlap zero). We cat-

egorically assigned paternity of all lambs for which a particular

candidate sire was specified in at least 80% of the samples of the

posterior distribution of the pedigree. Our pedigree analysis thus

generated 2253 assignments of paternity. The mean individual-

level posterior support for these assignments is approximately

98% (see Walling et al. 2010 for detailed discussion of the im-

portant distinction between individual- and pedigree-wide level

statistical confidence in parentage assignments); this statistic is

comparable to the assignment thresholds implemented in the pro-

gram CERVUS (Marshall et al. 1998; Kalinowski et al. 2007), which

has previously been used for pedigree estimation in this and many

other such study systems.

We calculated lifetime breeding success (LBS) as our metric

of fitness for both males and females. This quantity was defined

as the number of newborn lambs attributed to an individual, as

determined either by observation for females or by paternity as-

signment (as described) for males. LBS was only calculated for

individuals born in the study area between 1985 and 2002, but

with LBS calculated from lambs born up until and including

2010. This was to reduce bias in estimated fitness of individuals

that only visit the study area occasionally, and to reduce censoring

bias in those cohorts from which many individuals are still alive.

Relative fitness w was calculated by dividing LBS for each in-

dividual by the appropriate sex-specific mean. Note that the true

mean LBS must be equal in the two sexes and is known to be

slightly greater than 2 because the population has increased in

size over the course of the study. However, as life-history data

are not complete for all individuals, especially males, this treat-

ment should provide the closest approximation of true relative

fitness. In total, estimates of LBS (and thus w) are available for

1107 females and 1007 males, including 392 females and

114 males with nonzero estimated LBS.
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UNIVARIATE ANALYSES OF GENETIC VARIATION IN

FITNESS AND PHENOTYPE

We first tested for genetic variation in relative fitness, because in

the absence of genetic variance for fitness, genetic covariances

of traits with fitness are undefined. We fit the univariate animal

model

w = μ + Z1n + Z2a + Z3m + Ie, (4)

where μ, the population mean, is the only fixed effect, and where

Z1, Z2, and Z3 are design matrices relating observations to the

random effects of natal year n, breeding value a, maternal iden-

tity m, respectively. I is an identity matrix and e is a vector of

residual errors. All random effects (and residuals) are assumed

to be normal. Elements of a are further assumed to be drawn

from a ∼ N (0, G ⊗ A), where G is the additive genetic variance

covariance matrix (or rather the additive genetic variance in the

univariate analyses) and A is the pedigree-derived additive genetic

relatedness matrix. For brevity, we refer to G and its elements as

“genetic,” and other components of variation as “environmental,”

although strictly, G is expected to represent additive genetic vari-

ation, and nonheritable genetic variation, such as dominance and

epistatic (co)variances are included in other modeled terms, such

as permanent environment effects (see below) and residual terms.

We tested the significance of each random effect by comparing

the likelihood of this model to one in which the appropriate ran-

dom effect was omitted. This was done using likelihood ratio tests

assuming that the test statistic 2�lnL is χ2 distributed with one

degree of freedom.

We also applied univariate animal models to partition phe-

notypic variation in each of the four morphometric traits among

potential causal sources of variation, and particularly, to estimate

additive genetic variances. For each adult (age one or older) mor-

phometric trait, we then fitted the model

z = Xb + Z1n + Z2y + Z3pe + Z4a + Z5m + Ie, (5)

where X is a design matrix relating individual observations to

the fixed effects b, which consisted of the population means and

multilevel effects of age. Fixed effects included the population

mean and age as a multilevel factor (a separate level for each age

class in years). For weight and hind leg length only, additional

fixed effects of sex and a sex-by-age interaction were included.

Random effects were as for equation (4), but with the addition

of measurement year y and a permanent environment effect pe to

account for the nongenetic component of individual-level repeata-

bility. Statistical significance of random effects was assessed by

likelihood ratio tests as described above.

ANALYSES OF SELECTION AND PREDICTIONS FROM

THE UVBE AND STS

We used bivariate animal models to estimate the key parameters

for both the UVBE (the selection differentials, or phenotypic

covariances between focal traits and relative fitness) and the STS

(the genetic covariances between trait and fitness). In each of

these models, relative fitness and one of the phenotypic traits

were treated together as dependent variables

[w, z] = Xb + Z1n + Z2y + Z3pe + Z4a + Z5m + Ie. (6)

This model is very similar in construction to that specified by

equation (5), but the vectors of random effects are replaced by

matrices describing variation in both dependent variables. Other

than the mean, no fixed effects were fit for w, whereas the year

and residual variance components for w were constrained to be

zero. Consequently, residual variance in relative fitness is rep-

resented in pe, allowing estimation of the covariance between

relative fitness and the nongenetic component of individual-level

repeatability (i.e., permanent environment component) of z. This

is not to imply that we can somehow calculate a metric of the

repeatable component of variation for a trait, relative fitness,

that is measured only once. Rather, the biologically interesting,

nongenetic aspect of the relationship between phenotype and rel-

ative fitness is between the residuals of fitness and the repeatable

component of trait variation, and this constraint in the mixed

model renders this relationship estimable. Critically, in this bi-

variate animal model with fitness and phenotypic traits treated as

dependent variables, the additive genetic effects are assumed to

be drawn from the distribution

[ai (w), ai (z)] ∼ N

(
0,

[
σ2

a(w)A, σa(w, z)A

σa(w, z)A, σ2
a(z)A

])
. (7)

This definition of a is simply an explicit bivariate description

of the general definition of a following equation (4), above. We

provide this second definition to highlight how the genetic covari-

ance of a trait and relative fitness (i.e., σa(w, z)) can be obtained

directly from the solution of the mixed model equations for an

animal model.

We then calculated the phenotypic variance of each trait

based only on those modeled effects that are associated with the

individual, that is, σ2
p(z) = σ2

pe(z) + σ2
a(z) + σ2

r (z). We calculated

the heritability of each trait as the quotient of σ2
a(z) and this metric

of the phenotypic variance. The corresponding selection differen-

tial for each trait was then estimated as the phenotypic covariance

between trait and fitness, σp(w, z) = σpe(w, z) + σa(w, z), and

predicted responses from the UVBE determined as h2(z)σp(w, z).

The procedure by which standard errors of these predictions were

generated (and standard errors of the MVBE, see below) is pro-

vided in the appendix.
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To test whether the conditions under which the UVBE

is predictive hold, we applied the test recently advocated by

Morrissey et al. (2010; based on equations presented in Hadfield

2008 and Queller 1992). Specifically we compared, for each trait,

the likelihood of the model specified by equation (6) to one in

which we constrained the model such that ba(w, z) = bpe(w, z),

where b are regression coefficients of w on z (assuming the test

statistic 2�lnL , is χ2 distributed with one degree of freedom).

When the assumptions of the BE are met, that is, the trait in ques-

tion is the sole cause of its covariance with relative fitness, the

genetic and phenotypic regressions of relative fitness on pheno-

type will be equal. Thus, this test treats the case where the condi-

tions under which the BE is predictive of evolutionary change as

the null hypothesis. This is a quantitative implementation of the

type of analysis suggested by Rausher (1992), directly testing for

differences between the relationship between phenotype and fit-

ness at the phenotypic and genetic levels. This test is unbiased by

assumptions made when working with predicted breeding values

(Postma 2006; Hadfield et al. 2010), which have been problematic

in the tests reported to date. This constraint can be imposed using

ASREML by specifying the variance structures with the CHOL

command (ASREML user guide release 2, p. 124), in conjunction

with cross-covariance structure constraints (ASREML user guide

release 2, p. 137). Hence, if the unconstrained model is justifi-

ably better, the BE is shown not to be predictive. We similarly

fitted constrained models where either σa(z, w) alone, or both

σa(z, w) and σpe(z, w), were constrained to values of zero to as-

sess the statistical significance of the genetic and phenotypic (or

among-individual) covariances of each trait with relative fitness.

The former is a direct test of the predicted evolutionary change

under the STS (against a null hypothesis of zero change), whereas

the latter tests the significance of the selection differential used to

parameterize the UVBE.

MULTIVARIATE ANALYSIS OF SELECTION AND

PREDICTION OF EVOLUTION BY THE MVBE

To apply the MVBE, we used a multivariate animal model to deter-

mine the additive genetic variance–covariance structure among all

four morphometric traits (G). We fitted a model structure equiv-

alent to that specified in equation (5), but where z is a matrix

containing all records from all years for all individuals for all

traits. To obtain estimates of the form of multivariate selection

on the morphometric traits for which we have repeated measures,

we also fitted a mixed model equivalent to that specified by equa-

tion (6), where z again contains records of all traits, in addition to

records of estimated relative fitness. However, in this case we did

not include the additive genetic random effect because our goal

was to estimate the vector of phenotypic selection differentials (to

parameterize the MVBE); because the “permanent environment”

effect for each individual therefore represents all differences, ge-

Table 1. Univariate animal model-based genetic analysis of rel-

ative fitness in Soay sheep (Ovis aries) on St. Kilda. The maternal

effect was bounded at zero, and therefore we do not report its pa-

rameters; maternal effects on relative fitness were excluded from

subsequent analyses. σ2 is the variance of each component, and σ2

σ2
p

is the proportion of the total phenotypic variance attributable to

each component. Statistical significances were not calculated for

the proportional metrics (i.e., heritability, etc.) nor for the residual

or total phenotypic variance.

Component σ2±1 SE σ2

σ2
p
±1 SE

Birth year 3.27±1.32∗∗∗ 0.0549±0.0211
Genetic 1.55±0.868∗∗ 0.0259±0.0145
Maternal – –
Residual 54.9±1.89 0.919±0.0255
total phenotypic variance 59.7±2.17 –

∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

netic or otherwise, between individuals, we refer to it as id in this

model, to distinguish it from pe, above. We defined the entries in

id relating to covariances between relative fitness and the repeat-

able component of phenotypic variation in each of the traits as S
(the vector of selection differentials). We defined the repeatable

individual (i.e., arising from genetic and permanent environment

effects combined) and residual variance–covariance structures for

the morphometric traits as idmorph and emorph, respectively. We

were then able to estimate the vector of selection gradients as

β = (idmorph + emorph)−1S, (8)

which is conceptually equivalent to a standard multiple regression

analysis, but appropriate when repeated measures are available

for the traits of interest. We include emorph in equation (8) for com-

parability to the situation in which a single measurement of the

morphometric traits had been made, in which case the phenotypic

variance would be the combination of the within- and among-

individual variances, which we are able to separate in the current

context. Having thus estimated G and β, we obtained multivariate

BE-based predictions, �z̄MV B E , of evolutionary change for the

morphological traits by applying the MVBE (in a version called

the “Lande equation”; Lande 1979, 1982; Lande and Arnold 1983)

�z̄ = Gβ. (9)

Results
We detected significant (additive) genetic variance for LBS

(scaled in the analysis as relative fitness), our measure of in-

dividual fitness in the Soay sheep (Table 1). Birth year, fitted as

a random effect, is also significant source of variance, and was

therefore included for all subsequent analyses in which fitness

was modeled. We did not detect a significant maternal effect on
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Table 2. Univariate animal model-based genetic analysis of adult morphometric traits in Soay sheep (Ovis aries) on St. Kilda. Variance

component (σ2) subscripts are as follows: P , phenotypic variance conditional on the fixed effects; id, the total variance associated with

individuals; pe, the nongenetic component of individual variance; a, the genetic component of the individual variance; by, birth year; y,

measurement year; m, mother, and r, the residual variance. Statistical significances of the residual variance, and the compound variance

terms (i.e., P and id) were not calculated.

Trait σ2
p±1 SE σ2

id±1 SE σ2
pe±1 SE σ2

a±1 SE

Weight 29.9±2.00 9.65±0.651 8.10±0.7∗∗∗ 1.50±0.70∗∗

Leg length 1.3.102±10.6 67.9±3.2 49.3±3.7∗∗∗ 18.60±4.2∗∗∗

Horn length 4.6.103±5.2.103 2.1·103±1.8·102 1.4·103±2.2·102∗∗∗ 6.6·102±2.6·102∗∗

Scrotal circ 6.7·102±64.8 1.7·102±31.8 2.3·10−4±1.5·10−5 1.7·102±31.8∗∗∗

Trait σ2
by±1 SE σ2

y±1 SE σ2
m±1 SE σ2

r ±1 SE
Weight 4.0±1.3∗∗∗ 4.6±1.5∗∗∗ 1.5±0.4∗∗∗ 10.2±0.3
Leg length 32.0±10.2∗∗∗ 0.8±0.3∗∗∗ 8.4±2.1∗∗∗ 19.9±0.6
Horn length 1.4·103±5.0·102∗∗∗ 2.1·102±78.0∗∗∗ 3.4·102±1.4·102∗∗ 5.9·102±33.9
Scrotal circ 21.6±17.5∗ 1.3·102±57.1∗∗∗ 3.8·10−5±2.6·10−6 3.5·102±24.0

∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

LBS, and indeed the maternal variance estimate was constrained

at the lower limit (i.e., very close to zero) when estimates were

constrained to positive parameter space. On this basis we chose to

simplify model fitting by excluding maternal effects on fitness in

subsequent analyses. We also detected significant additive genetic

variance for the four morphological traits tested: adult weight, leg

length, horn length, and scrotal circumference (Table 2). The other

fitted random effects were statistically significant sources of vari-

ance for all traits, except for scrotal circumference, where both

the nongenetic component of individual repeatability (permanent

environment effect) and the maternal effects were nonsignificant

and estimated to be very small.

For all four adult morphometric traits, we found a positive

association between the repeatable component of phenotype and

fitness (Table 3). This is shown in the estimated selection differen-

tials which are highly significant for weight, hind leg length, and

horn length. Note that the nongenetic component of repeatability

was very small for scrotal circumference (see above), and so the

estimate of selection on this trait arises almost entirely from the

genetic component of trait-fitness covariance which was found

to be positive, but not statistically significant (Table 3). Conse-

quently, the UVBE predicts positive evolutionary change in all

traits (Figure 1), although the predictions of change in leg length

and scrotal circumference are very small (<2 mm/generation),

and the estimate for scrotal circumference has a very large sam-

pling error relative to the magnitude of the estimate. Estimates of

per-generation change ± 1 SE are as follows: weight, +0.57 ±
0.25 kg; hind leg length, +1.58 ± 0.53 mm; horn length, +12.22

± 5.33 mm; scrotal circumference, +1.59 ±1.33 mm.

The multivariate genetic variance–covariance structure is

predominantly characterized by positive relationships among the

four adult sheep traits (Table 4). The only exception is a modest

negative genetic correlation between leg length and horn length,

which is not statistically significant as inferred from the overlap

of its standard error (i.e., approximate 50% confidence interval)

with zero. Although nearly all phenotypic and genetic correla-

tions among traits are positive, the relationships are not so strong

that we should reasonably consider the traits, as measured, to be

biologically equivalent aspects of the phenotype. For example,

the phenotypic and genetic correlations between weight and leg

length are only 0.53 and 0.50, respectively, suggesting that these

two measures of size capture at least partially distinct aspects

of individual phenotype, and should be considered as genetically

distinct traits (i.e., rG does not equal +1). An exception to this lies

in the estimated genetic correlation between weight and scrotal

circumference, which is actually estimated at slightly greater than

the upper limit of +1. (Note that while correlations in excess of

one are not biologically interpretable as such, convergence of the

multivariate animal model was only possible with G modeled as

a completely unstructured and unconstrained matrix.)

The vector β contains the partial regression coefficients, or

selection gradients, for the (phenotypic) regression of relative fit-

ness on the repeatable component of individual phenotype, which

are positive for all traits except scrotal circumference. Based on

approximately doubling the standard errors, these selection gra-

dients are statistically significant for weight and horn length only

(Table 5). The MVBE-based predictions of evolutionary change

are positive for all traits (Table 5, Fig. 1). Despite the negative

selection gradient for scrotal circumference, positive evolutionary

change is expected for this trait, in large part as a consequence of

its strong genetic covariance with body weight (Table 4), which is

apparently subject to strong positive selection as estimated here.

In contrast to the predictions of both the univariate and mul-

tivariate applications of the BEs, the predictions based on the
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Table 3. Bivariate animal model-based estimates of individual-level covariation between morphometric traits and relative fitness in

Soay sheep (Ovis aries) on St. Kilda. The phenotypic covariance between each trait and relative fitness, σa(w, z) + σpe(w, z), is the selection

differential, and the additive genetic covariance of each trait with relative fitness, σa(w, z), is the prediction of evolutionary change based

on the secondary theorem of selection. The two-tailed probability values associated with the test of the null hypothesis of the equivalence

of the regressions b of relative fitness of the genetic and nongenetic but repeatable components of phenotypic variance, σa(w, z) and

σpe(w, z) are presented in the last column. This test pertains to whether the predictions of the univariate breeders equation and the

secondary theorem of selection are consistent with one another. The nongenetic component of the repeatability of scrotal circumference

is fixed at the boundary (zero), and so we do not report it or P values from statistical tests that would involve this parameter.

Trait σa(w, z)+σpe(w, z)±1 SE P(σa(w, z)+σpe(w, z)=0)

Weight 7.52±0.73 <10−7

Hind leg length 7.48±1.94 3.40·10−7

Horn length 49.5±11.4 1.09·10−7

Scrotal circ – –

Trait σa(w, z)±1 S.E. P(σa(w, z)=0) P(ba(w, z)=bpe(w, z))

Weight −0.011±0.407 0.157 0.0483
Hind leg length −1.09±1.28 0.291 6.393·10−4

Horn length 12.57±9.08 0.074 1.000
scrotal circ 4.94±4.07 0.121 –
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Figure 1. Predictions of phenotypic evolution of adult morphometric traits in Soay sheep (Ovis aries) on St. Kilda using the univariate

breeder’s equation (UVBE), the multivariate breeder’s equation (MVBE), and the empirical application of the secondary theorem of natural

selection. Error bars show standard errors.
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Table 4. Multivariate animal model-based genetic analysis of

individual-associated variance components for adult morphome-

tric traits in Soay sheep (Ovis aries) on St. Kilda. Values on the

diagonal are variances, covariances are reported below the diago-

nals and correlations are reported above the diagonals. All values

are reported ±1 SE. Traits are (left to right and top to bottom)

weight, hind leg length, (male) length of normal morph horns,

and (male) scrotal circumference.

(a) Phenotypic, conditional on all nonindividual associated
effects

17.3±0.5 0.53±0.016 0.50±0.027 0.56±0.030
20.3±1.0 85.0 ± 2.99 0.35±0.033 0.29±0.042

100.3±7.2 158.4±16.89 2350.9±141.2 0.2828±0.043
52.2±4.0 61.4±9.64 310.4±50.81 512.5±31.26

(b) Permanent environment

7.7±0.6 0.86±0.03 0.70±0.07 0.90±0.83
16.1±1.2 45.8±3.48 0.64±0.07 0.69±0.71
67.6±8.1 151.8±19.9 1226.8±174.2 0.19±0.42
10.8±4.2 20.2±10.5 29.0±62.8 18.7±41.7

(c) Additive genetic

1.2±0.5 0.50±0.15 0.33±0.24 1.13±0.19
2.4±1.2 19.1±3.9 −0.18±0.20 0.54±0.15
9.2±7.6 −19.0±20.5 612.8±202.4 0.54±0.20

16.2±4.0 30.7±10.4 174.2±69.4 167.3±49.0

(d) Residual

8.4±0.2 0.14±0.02 0.36±0.03 0.48±0.04
1.8±0.3 20.1±0.6 0.25±0.03 0.13±0.05

23.5±2.2 25.5±3.8 511.3±28.4 0.26±0.05
25.2±2.3 10.6±4.2 107.2±21.2 326.5±21.8

Table 5. Selection gradients (β) and multivariate breeder’s

equation-based predictions of the evolution (�z̄) of adult mor-

phometric traits in Soay sheep (Ovis aries) on St. Kilda.

Trait Units β (units/σ2)±1 SE �z̄ (units)±1 SE

Weight kg 0.436±0.060 0.547 ± 0.321
Hind leg

length
mm 0.018±0.022 1.39 ± 0.817

Horn length mm 8.70.10−3±2.90.10−3 5.50 ± 4.37
Scrotal circ mm −9.55.10−3±5.88.10−3 7.60 ± 2.11

application of the secondary theorem of natural selection are ac-

tually negative for weight and for hind leg length, although the

estimate is very small in magnitude for weight. Furthermore, the

genetic and nongenetic regressions of relative fitness on the re-

peatable components of phenotypic variation for weight and hind

leg length are significantly different (Table 3), with the genetic

regressions being smaller than the nongenetic regressions. This re-

sult indicates that, for these two traits, the conditions under which

the UVBE should be predictive (and equivalent to the STS) do

not hold.

Discussion
We detected covariance of morphometric traits with fitness, ad-

ditive genetic variance for those traits, and also additive genetic

variance for fitness in Soay sheep on St. Kilda. Thus, a number

of parameters have values that are consistent with potential for

evolutionary change. However, the point estimates of evolution-

ary change as predicted by the BE, in both its univariate and

multivariate forms, and by the STS, are qualitatively different

for body weight and leg length. Furthermore, for these two body

size traits, the genetic and nongenetic regressions of fitness on

phenotype are statistically significantly different, and as such we

can demonstrate that the UVBE is not quantitatively predictive.

This is because these regressions will differ when the assumption

of causality that is required in the UVBE does not hold. In con-

trast, predictions of evolutionary change based on the alternate

approaches are similar for horn size and scrotal circumference.

Thus, we have provided an empirical demonstration of the poten-

tial for predictions of the BE to differ from those of the STS.

With respect to the evolution of body size, the qualitative

contrast between evolutionary predictions based on the BE and

the STS is quite stark. The former predicts that sheep should in-

crease in size, while stasis, or indeed evolution of smaller size, is

predicted by the latter approach (Fig. 1A, B). This result suggests

that the positive (phenotypic) associations between body size and

fitness do not arise, at least in totality, from a causal effect of

size on fitness. Consequently it seems likely that estimates of

positive selection on body size are upwardly biased. This conclu-

sion may provide some resolution to the observation that stasis or

counterintuitive phenotypic trends are often found for body size

traits (Merilä et al. 2001), in spite of apparently widespread di-

rectional selection and heritable variation (e.g., Réale et al. 2003;

Kingsolver and Pfennig 2004).

Importantly, although the application of the STS indicates

that we should not expect evolution of size, it does not tell us

why. Specifically, it provides no answers to the questions of (1)

what the true form of natural selection is (with respect to size

and/or other traits of interest)? or (2) what genetic constraints

may be acting to generate the lack of predicted evolution? It may

be that body size is not selected, but rather that an unmeasured

trait or aspect of the environment is a causative agent of both

fitness variation and of trait (size) variation, but that this is inde-

pendent of any effect of size on fitness. In this scenario, size is

heritable and covaries with fitness, but there is in fact no selection

(the scenario primarily advocated by Rausher 1992 and Kruuk
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et al. 2003). Alternatively, size may be positively selected, that

is, have a causative effect on fitness, but genetically correlated

traits may be antagonistically selected, a situation consistent with

the notion that different aspects of the way body size is related to

fitness variation should generate trade-offs (Blackenhorn 2000).

In both scenarios, which are not mutually exclusive, the model of

selection, genetics, and ultimately evolutionary change provided

in the BE is inadequate because of unmeasured quantities (traits,

or environmental variation at the level of different experiences of

individuals).

The evolution of horn length and scrotal circumference have

not been studied in detail in Soay sheep. Here, the predictions

of evolutionary change are more consistently positive across the

three models, although we note all predictions are associated

with substantial statistical uncertainty. Detailed further analyses,

similar to those that have been conducted for body size (Wilson

et al. 2007; Ozgul et al. 2009), will have to be conducted for

these traits before we can determine whether these evolutionary

predictions are consistent with the temporal dynamics of these

characters. The current analysis indicates, as is the case for these

two traits, that the evolutionary predictions of the UVBE and the

STS can be consistent.

The multivariate formulation of the BE is generally presented

as an improvement on the univariate form in the sense that it is

biologically unrealistic to assume that natural selection acts on

single traits in isolation. Although the “missing trait” problem

still persists (i.e., one can always posit the existence of an addi-

tional factor that should have been included), it seems intuitive

that multivariate models must be preferable to univariate mod-

els in the sense that at least there will be fewer missing factors.

However, there is also a hidden danger in the application of the

MVBE. The danger arises from the fact that an inadequate model

of selection for one trait will not only result in erroneous evolu-

tionary predictions for that trait (as it would in the application of

the UVBE), but that error may also be propagated to predictions

for genetically correlated traits included in the analysis. Thus, it is

entirely possible that UVBE-based evolutionary predictions may

be more accurate than those of the MVBE. Although of course we

do not know the “truth” here, it is notable that the predictions of

evolutionary change for horn length are similar from UVBE and

STS but less so from MVBE. This discrepancy arises from the

negative genetic correlation of horn length with leg length, and

our model of selection of leg length that we suspect may be inade-

quate, as discussed above. Similarly, the apparent over-prediction

of evolutionary change of scrotal circumference by the MVBE,

relative to the prediction based on the STE, may arise from an

inadequate model of selection of body mass, combined with the

strong genetic correlation of body mass and this trait.

It is of course somewhat unsatisfying to argue that (1) the

predictions of the BE and the STS are qualitatively different, and

(2) that the STS does not predict evolution of body size, when

there are clearly very substantial uncertainties associated with all

quantitative predictions (Fig. 1). Nevertheless, further dissection

of the heritable and nonheritable components of the relationships

between the traits and fitness appears useful in supporting our

contention. The test for the inequality of the genetic and non-

genetic regressions of fitness on the phenotypic traits provides us

with more statistically justifiable grounds for the argument that

the UVBE and the STS predictions differ for weight and leg length

(Table 3). We hope that this test will prove a particularly useful

addition to the set of tools available for studying the genetics,

selection, and evolution of traits in natural populations.

ANALYTICAL CONSIDERATIONS

Empirical application of the STS is in its infancy. The application

of mixed models where both relative fitness and phenotypic traits

are treated as dependent variables is a fairly novel methodological

approach in this respect (but see Etterson and Shaw 2001; Kruuk

et al. 2002; and Morrissey and Ferguson 2011), and to our knowl-

edge, this is the first such application to calculate the phenotypic

covariance of a repeated measures trait with relative fitness to

apply the BE. A number of reports exist from studies where fit-

ness has been treated as a dependent variable in a mixed model to

estimate the genetic variance of fitness (e.g., Price and Schluter

1991; Merilä and Sheldon 2000; Coltman et al. 2005; Teplitsky

et al. 2009). Thus, this methodology provides a pragmatic way

forward, but several considerations should be noted, and addition-

ally, a number of avenues for refinement of the methods are worth

highlighting.

First, some discussion of previous similar analyses is worth-

while. Etterson and Shaw (2001) estimated genetic covariances

between traits and relative fitness as predictors of evolution in

data from a field experiment, and their approach was directly

motivated by Robertson (1966) and Price (1970). In discussing

their estimates, however, they suggested that their results might

be different had other, unmeasured, traits been included in their

analysis. Aside from the general tendency of models with differ-

ent data to give numerically different results, we feel that their

estimates should hold, because the genetic covariances of traits

with relative fitness should hold as evolutionary predictors, re-

gardless of whether they are generated by direct or indirect selec-

tion. A number of estimates of the genetic basis of trait-fitness

relationships have been based on the regression of fitness on pre-

dicted breeding values (e.g., Kruuk et al. 2001, 2002). These have

been informative in that they have demonstrated the potential for

trait-fitness relationships to differ at the phenotypic and genetic

levels. However, this approach is biased, potentially severely, to-

ward the form of the environmental relationship between traits

and fitness, and thus can be biased both in magnitude and direc-

tion (Postma 2006; Hadfield et al. 2010). This bias arises from
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the fact that errors in the prediction of breeding values represent

a portion of the environmental variance. Finally, other investiga-

tions of the genetic basis of phenotype-fitness relationships have

been less quantitative, at least with respect to the key parame-

ter of the STS; Robinson et al. (2006), Morrissey and Ferguson

(2011), and Kruuk et al. (2002) made genetic inferences, with

respect to selection and evolutionary change, of the genetic basis

of phenotype fitness relationships based on correlations of traits

with absolute, rather than relative, fitness. These tests were thus

not quantitatively predictive of evolutionary trajectories, but were

unbiased.

The fitting of mixed models of the type used here relies on

an assumption of normality of residuals. Because it is not always

clear exactly what the consequences of violating this assumption

will be, it is best to design studies in such a way that comparisons

are made among quantities that are estimated in similar ways.

The key comparisons that we present are designed this way: the

covariances of traits with fitness that are at the heart of the BE

(both univariate and multivariate) and the STS, that is, the phe-

notypic and genetic covariances of the traits with relative fitness,

were all estimated in models with the same assumptions about the

distribution of fitness residuals. Similarly, the comparisons of the

genetic and nongenetic regressions of fitness on the traits were

conducted in such a comparable manner.

However, it is possible that quantitative inferences of the sort

we report here could be obtained from models that allow more

sophisticated treatment of fitness distributions. Multivariate gen-

eralized linear mixed models (Bolker et al. 2009) should provide a

means of testing relationships among nonnormal dependent vari-

ables, and allow estimation of covariance components between

normally and nonnormally distributed traits. This is possible by

assuming normality on an imaginary underlying scale, and link-

ing observed data to this scale with a convenient “link” function.

Sources of covariance among traits, or in the current context,

among traits and fitness can then be estimated on this imaginary

(but very useful) scale. Of course natural selection is probably

best thought of as acting on the observed phenotype, rather than

on some statistically convenient link scale, although this prob-

lem is not insurmountable. Both exact (Rice 2004) and numerical

approximation techniques could be devised to recover observed-

scale parameters from generalized linear mixed models. Recover-

ing estimates of (observed) trait-relative fitness covariances may

not be a particularly complex task, although evaluating differ-

ences between the genetic and nongenetic regressions of fitness

on traits may be much more difficult. Additionally, because fit-

ness is commonly measured as a count (e.g., LBS), it will not be

normally distributed (and neither will be its residuals from any

plausible model we can readily conceive of). However, it may

not readily conform to a Poisson distribution either, but rather

may often require a distribution that allows overdispersion (e.g.,

overdispersed Poisson). Again this is possible in a generalized lin-

ear mixed model framework, but derivation of the critical parame-

ters on the observed scale will be more difficult still. Currently the

most sophisticated available software for fitting generalized linear

mixed models, the R package MCMCGLMM (Hadfield 2010) can-

not readily accommodate multivariate models where some traits

have repeated records whereas others (e.g., fitness) do not. We

also note that the numerical problems associated with these kinds

of models are enormous in the most flexible framework in which

fitting these generalized linear mixed models might be conducted,

that is, the BUGS (Lunn et al. 2000) or JAGS (Plummer 2010)

Bayesian programming environments.

Finally, it is of note that there is little tradition in evolution-

ary quantitative genetics of reporting uncertainties associated with

evolutionary predictions, whether obtained by application of the

BE, or otherwise. Our attempts to calculate standard errors around

predictions of evolutionary change should be considered approx-

imations for a number of reasons. First, our estimated standard

errors are all based on normal approximations of the sampling er-

ror. Second, our estimates for the UVBE assume independence be-

tween the estimates of heritability and selection (and estimates of

the MVBE assumed independence between G and β). Third, and

perhaps most importantly, all estimates are derived from mixed

models that assume normality of residuals, as discussed above.

Consequently, the standard errors we report here should not be

used for hypothesis testing. However, we have included them to

provide some feel of the relative uncertainties associated with the

different estimated parameters and predictions that we present.

In that context, it is certainly of note that the uncertainties in the

evolutionary predictions based on the STS are not vastly greater

than those based on the BE.

ACKNOWLEDGMENTS
We thank the National Trust for Scotland and Scottish Natural Heritage for
permission to work on St. Kilda, and the Royal Artillery Range (Hebrides)
and QinetiQ for logistic support. We thank J. Hadfield and I. White for
useful comments and discussions. The Soay sheep data were collected
primarily by field assistants J. Pilkington, A. MacColl, T. Robertson,
J. Kinsley, and many volunteers. The long-term data collection on St.
Kilda has been supported by the Natural Environment Research Council,
the Wellcome Trust, the Biotechnology and Biological Sciences Research
Council, and the Royal Society. MBM is supported by a postdoctoral
fellowship from the Natural Sciences and Engineering Research Council
of Canada, LEBK was supported by a University Research Fellowship
from the Royal Society, AJW is supported by a David Phillips Research
Fellowship from the BBSRC, and PK is supported by a Marie Curie
International Training Fellowship.

LITERATURE CITED
Blackenhorn, W. U. 2000. The evolution of body size: what keeps organisms

small? Q. Rev. Biol. 75:385–407.
Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulson, M. H.

H. Stevens, and J. S. S. White. 2009. Generalized linear mixed models:

2 4 0 8 EVOLUTION AUGUST 2012



EMPIRICAL APPLICATION OF THE SECONDARY THEOREM OF SELECTION

a practical guide for ecology and evolution. Trends Ecol. Evol. 24:127–
135.

Clutton-Brock, T. H., K. Wilson, and I. R. Stevenson. 1997. Density-dependent
selection on horn phenotype in Soay sheep. Philos. Trans. R Soc, B: Biol
Sci 352:839–850.

Coltman, D. W., D. R. Bancroft, A. Robertson, J. A. Smith, T. H. Clutton-
Brock, and J. M. Pemberton. 1999a. Male reproductive success in a
promiscuous mammal: behavioural estimates compared with genetic
paternity. Mol Ecol. 8:1199–1209.

Coltman, D. W., J. A. Smith, D. R. Bancroft, J. Pilkington, A. D. C. MacColl,
T. H. Clutton-Brock, and J. M. Pemberton. 1999b. Density-dependent
variation in lifetime breeding success and natural sexual selection in
Soay rams. Am. Nat. 154:730–746.

Coltman, D. W., P. O Donoghue, J. T. Hogg, and M. Festa-Bianchet. 2005.
Selection and genetic (co)variance in bighorn sheep. Evolution 59:1372–
1382.

Endler, J. A. 1986. Natural selection in the wild. Princeton Univ. Press,
Princeton, NJ.

Etterson, J. R., and R. G. Shaw. 2001. Constraint to adaptive evolution in
response to global warming. Science 294:151–154.

Falconer, D. S. 1981. Introduction to quantitative genetics. Oliver and Boyd,
New York, NY.

Gienapp, P., C. Teplitsky, J. S. Alho, A. Millsa, and J. Merilä. 2008. Cli-
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Appendix
STANDARD ERRORS

Unless specifically noted here, all standard errors were obtained

directly from ASREML, which uses the delta method (Lynch and

Walsh 1998). For example, the standard errors of σ2
p(z), σp(w, z),

and h2(z) were obtained this way, fully accounting for sampling

variances of each parameter and the sampling covariances among

the component parameters. No methods are implemented in

ASREML to obtain the standard errors of the product of the her-

itability and the selection gradient, and so we obtained approxi-

mate standard errors (indeed they are all approximate) assuming

that squared relative standard errors are additive, that is,

σ[�z̄] = h2(z)σp(w, z)

√(
σ[h2(z)]

h2(z)

)2

+
(

σ[σP (w, z)]

σP (w, z)

)2

, (A1)

where we use σ followed by square brackets to denote sampling

error. This approximation of the standard error of �z̄ assumes

that the sampling covariance between h2(z) and σp(w, z) is zero.

Although this may not be the case, we do expect it to be small

in magnitude relative to the sampling variances of the terms in

the summations (i.e., sampling variances of components of σ2
a(z)

and σp(w, z)). It is therefore our expectation that this should be

a useful approximation for the standard error on the predicted

selection response.

Similarly, no automated methods are available for calculation

of standard errors for predictions of the MVBE, so we adopted a

Monte Carlo simulation approach. We approximated the standard

errors for the estimates of β and �z̄MV B E by simulating 1000

replicate multivariate normal matrices each of id and G, using

the maximum likelihood estimates of these matrices as the mean

vectors, and the variance–covariance matrices of their component

parameters as the variance. Specifically, we sampled

⎡
⎢⎢⎢⎣

�idmorph

�emorph

�S

⎤
⎥⎥⎥⎦

′

∼ N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

�idmorph

�emorph

�S

⎤
⎥⎥⎥⎦ ,

σ2

⎡
⎢⎢⎢⎣

�idmorph �idmorph, �emorph �idmorph, �S
�idmorph, �emorph �emorph �emorph, �S
�idmorph, �S �emorph, �S �S

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ ,

�G′ ∼ N ( �̄G, σ2[ �G]),

where the vector symbol (→) denotes a vector of the elements

of a variance–covariance matrix, where ′ indicates a parametric

bootstrap replicate sample of the vector of parameters, where

the bar indicates the mean estimates, and where σ[] indicates

the sampling variances and covariances of the parameters. We

then applied equations (8) and (9) to each of the 1000 sets of

bootstrap matrices and took the standard deviations of the re-

sulting 1000 estimates of β and �z̄MV B E to be the standard

errors.
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